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SUMMARY

We develop and analyse an improved version of the multi-stage (MUSTA) approach to the construction
of upwind Godunov-type �uxes whereby the solution of the Riemann problem, approximate or exact, is
not required. The new MUSTA schemes improve upon the original schemes in terms of monotonicity
properties, accuracy and stability in multiple space dimensions. We incorporate the MUSTA technol-
ogy into the framework of �nite-volume weighted essentially nonoscillatory schemes as applied to the
Euler equations of compressible gas dynamics. The results demonstrate that our new schemes are good
alternatives to current centred methods and to conventional upwind methods as applied to complicated
hyperbolic systems for which the solution of the Riemann problem is costly or unknown. Copyright ?
2005 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Godunov-type upwind �nite-volume methods represent a popular class of modern numerical
tools for solving hyperbolic systems of conservation laws. The key idea behind the original
�rst-order scheme [1] is to incorporate into the numerical �ux the physics of wave propagation
via the self-similar solution of the local Riemann problem. Higher-order versions can be
constructed by using piece-wise polynomial representation of data [2–6]. The resulting high-
order upwind schemes are accurate, reliable and applicable to a large variety of systems of
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conservation laws. See References [7, 8] for recent reviews on Godunov-type methods for
equations of compressible gas dynamics, magnetohydrodynamics and elasticity.
An alternative to the upwind methods is represented by the class of so-called centred, or

symmetric, methods [9–11]. The construction of corresponding centred numerical �uxes does
not require a detailed knowledge of the structure of the Riemann problem solution. This
makes them simple and e�cient but also quite di�usive as compared to the Godunov-type
�uxes. The truncation error of the centred schemes is inversely proportional to the Courant
number coe�cient resulting in very poor resolution of slowly moving waves, especially those
associated with linearly degenerate �elds, such as contact waves, shear waves and vortices.
Additionally, the known �rst-order centred �uxes are not directly applicable to the construc-
tion of multi-dimensional unsplit schemes because resulting �nite-volume methods are uncon-
ditionally unstable [12]. Development of stable multi-dimensional centred schemes requires
the use of special predictor-corrector techniques, leading to additional and quite substantial
complexity, see References [13, 14] and references therein.
A recent approach for the construction of numerical �uxes that combine good properties

of upwind �uxes and simplicity of centred �uxes is the multi-stage (MUSTA) approach [15].
The key idea behind MUSTA is to solve the local Riemann problem numerically rather than
analytically by means of a simple and computationally inexpensive �rst-order centred method.
By using local time marching one e�ectively resolves the correct structure of the solution of
the local Riemann problem and then uses this information for evaluating the numerical �ux.
The resulting upwind MUSTA schemes are found to be considerably more accurate than
the centred methods and comparable to upwind methods [15]. Additionally, the unsplit �nite-
volume MUSTA schemes are stable in multiple space dimensions which allows one to use the
corresponding MUSTA �uxes in the construction of higher-order Godunov-type methods [16].
Despite signi�cant improvements over centred methods in terms of accuracy and stability

in multiple space dimensions, o�ered by the MUSTA approach, one important problem re-
mains: the truncation error of the scheme is still inversely proportional to the Courant number
coe�cient. This means that the performance of the scheme will be inferior to that of good
upwind methods when a small Courant number needs to be used. We note, however, that the
coe�cient of the leading term of the truncation error of MUSTA schemes is several times
smaller than that of centred methods, and thus the impact on accuracy will also be smaller.
The aim of this paper is twofold. Firstly, we analyse in detail the properties of the orig-

inal MUSTA approach [15], such as consistency and stability in multiple space dimensions.
Secondly, we develop an improved version of MUSTA which is obtained from the origi-
nal MUSTA by changes in the local time stepping procedure. The improvements are three-
fold. Firstly, the new MUSTA �ux converges to the Godunov �ux as the number of stages
grows and therefore, the resulting �ux is monotone. Secondly, the truncation error of the new
MUSTA schemes is a linear function of the Courant number coe�cient and does not depend
on the reciprocal of the Courant number coe�cient. Thirdly, the stability region of the new
MUSTA scheme coincides with that of the Godunov method and is larger than that of the
original variant.
We provide numerical examples for the compressible Euler equations in one, two and three

space dimensions. These examples demonstrate that the new MUSTA schemes e�ectively
match the accuracy of the Godunov method with state-of-the-art Riemann solvers. We also
show the ease with which it is possible to incorporate the developed MUSTA �ux into existing
�nite-volume schemes.
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The rest of the paper is organized as follows. In Section 2, we outline the general frame-
work of multi-dimensional �nite-volume schemes. In Section 3, we describe the original and
improved MUSTA schemes. In Section 4, we study the properties of the schemes in one
space dimension. In Section 5, we analyse the stability of the MUSTA schemes in multiple
space dimensions. Remarks on the practical implementation for nonlinear systems are given in
Section 6. Numerical results are provided in Section 7 and conclusions are drawn in Section 8.

2. FINITE-VOLUME SCHEMES IN MULTIPLE SPACE DIMENSIONS

Consider three-dimensional hyperbolic systems in conservation form

@tQ+ @xF(Q) + @yG(Q) + @zH(Q)= 0 (1)

where Q(x; y; z; t) is the vector of unknown conservative variables and F(Q), G(Q) and H(Q)
are physical �ux vectors in x, y and z coordinate directions, respectively. Integrating (1) over
a control volume (a computational cell) in x–y–z space of dimensions �x= xi+1=2 − xi−1=2,
�y=yj+1=2 − yj−1=2, �z= zk+1=2 − zk−1=2, we obtain the following semi-discrete relation:

d
dt
Qijk(t) =

1
�x
(Fi−1=2; jk − Fi+1=2; jk) +

1
�y

(Gi; j−1=2; k −Gi; j+1=2; k)

+
1
�z
(Hij; k−1=2 −Hij; k+1=2) (2)

where, as usual, Qijk(t) is the spatial average of the solution in the cell at time t and Fi+1=2; jk ,
Gi; j+1=2; k and Hij; k+1=2 are spatial averages of physical �uxes over cell faces at time t. The
simplest scheme which can be considered from the above framework results from assuming
initial data at time tn as given by a set of piece-wise constant values Qijk and using the Euler
time-stepping to discretize the time derivative to obtain

Qn+1
ijk =Q

n
ijk +

�t
�x

(
Fi−1=2; jk − Fi+1=2; jk

)
+
�t
�y

(
Gi; j−1=2; k −Gi; j+1=2; k

)

+
�t
�z
(Hij; k−1=2 −Hij; k+1=2) (3)

The description of scheme (3) is complete once expressions for the numerical �uxes are
provided. Godunov [1] proposed to use the self-similar solution Q∗(x=t) of the local Riemann
problem to compute numerical �uxes in the direction normal to the cell faces. For example,
for Fi+1=2 the local Riemann problem is given by

@
@t
Q+

@
@x
F= 0; Q(x; 0)=

{
QL =Qijk ; x¡0

QR =Qi+1; jk ; x¿0
(4)
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The original Godunov �ux is given by Fi+1=2 =F(Q∗(0)). More generally, the numerical �ux
can be de�ned as a two-point function of left and right data in the local Riemann problem:

Fi+1=2 =Fi+1=2(QL;QR) (5)

In most cases the upwind Godunov-type �uxes cannot be written as an explicit function of
QL, QR. Centred �uxes can be written in form (5), which makes them simple to implement
and applicable to a wider class of the hyperbolic systems. However, they cannot be directly
used in (3) since the resulting �nite-volume scheme is unconditionally unstable [12].
Higher-order extensions of the basic scheme (3) can be constructed in a number of ways.

The simplest spatially second order and monotone scheme results from using the limited
piece-wise linear reconstruction of data inside each cell [2, 3]. In this paper we consider
the weighted essentially nonoscillatory schemes, see Reference [6] and references therein, in
which one combines piece-wise polynomial representation of data inside each computational
cell with high-order Runge–Kutta methods for time discretization. The numerical �uxes in
WENO methods are obtained by approximating the integrals of the physical �ux over cell
faces by a certain quadrature and then using a �rst-order �ux, computed from (4), as a
building block for each pair of boundary extrapolated values at the integration point. The
only di�erence is that now the left and right data are not equal to cell averages but obtained
by means of the WENO reconstruction procedure.

3. MUSTA NUMERICAL FLUXES

A very simple and general approach to the construction of numerical �uxes, which combines
the simplicity of centred �uxes and the good accuracy of the Godunov method, is the MUSTA
approach [15]. The key idea of the original MUSTA is to open the Riemann fan by evolving
in time the initial data QL, QR in (4) via the governing equations and can be explained as
follows.
Assume we know the values Q(l)

L , Q
(l)
R , adjacent to the interface xi+1=2, at the stage (local

time step) l. Integrating (4) over the left [−�x; 0]×[0;�t] and right [0;+�x]×[0;�t] control
volumes and using transmissive boundary conditions at x= ± �x we obtain the following
relations (in local coordinates):

Q(l+1)
L =Q(l)

L − �t
�x
[F(l)1=2 − F(l)L ]; F(l)L =F(Q

(l)
L )

Q(l+1)
R =Q(l)

R − �t
�x
[F(l)R − F(l)1=2]; F(l)R =F(Q

(l)
R )

(6)

Here F(l)1=2 is computed by using a certain monotone scheme with the evolved data at stage l:

F(l)1=2 =F(Q
(l)
L ;Q(l)

R ) (7)

From the point of view of simplicity and e�ciency a �rst-order monotone centred scheme is
the best choice. Here we use the �rst-order centred scheme (FORCE) [11]. The corresponding
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�ux of form (5) is given by the following expression:

FFORCE(QL;QR)=
1
4

(
FL + 2FM + FR − �x

�t
(QR −QL)

)

FM =F(Q1=2) Q1=2 =
1
2

(
(QL +QR)− �t

�x
(FR − FL)

) (8)

For discussion on properties of the FORCE scheme, including convergence for two-by-two
nonlinear hyperbolic systems, see References [7, 17].
The procedure to evaluate the MUSTA �ux as given in Reference [15] can now be sum-

marized as follows. The multi-staging (or local time stepping) is started by setting Q(0)
L ≡QL,

Q(0)
R ≡QR for the initial stage l=0. Then for 06l6L− 1, where L is the desired number of

stages, we do

1. Compute the FORCE �ux (8) on data at the stage l as F(l)1=2 =F
FORCE(Q(l)

L ;Q(l)
R ).

2. Update the left and right data using (6).
3. Goto to step 1.

Note that the global time step �t from the simultaneous update (3) is used in the local
time marching (6) and FORCE �ux (8). The �nal MUSTA �ux is given by FMUSTAi+1=2 =F(L)1=2 =
FFORCE(Q(L)

L ;Q(L)
R ). We also remark that the case L=0 reproduces the FORCE scheme.

An improved version of the above �ux can be constructed by using a larger local computa-
tional domain and choosing the time step in the local time marching (6) from the local data.
E�ectively, this is equivalent to solving the local Riemann problem (4) numerically. Let us
introduce a local spatial domain and the corresponding mesh with 2M cells: −M +16m6M .
As before, the boundary between cells m=0 and 1 corresponds to the interface position xi+1=2
in (4). We again apply transmissive boundary conditions at numerical boundaries x±M+1=2.
The local time marching is then organized as follows:

1. Apply transmissive boundary conditions Q(l)
−M =Q

(l)
−M+1, Q

(l)
M+1 =Q

(l)
M .

2. For m= − M; : : : ;M compute the �uxes on data from stage l using the global cell size
�x (as before) and local time step �tloc in (8).

3. For m= − M + 1; : : : ; M advance the local solution:

Q(l+1)
m =Q(l)

m − �tloc
�x

(F(l)m+1=2 − F(l)m−1=2) (9)

As before, at the end of the time marching the MUSTA �ux is given by FMUSTAi+1=2 =F(L)1=2. The
local time step �tloc = tl+1− tl is now calculated from the data in the local Riemann problem
using the stability condition of the underlying FORCE scheme.
We remark that in the local updating procedures (6) and (9) we do not take several cells

per each cell of the global mesh. The solution of the local Riemann problem is found on a
separate mesh that has no relation to the global mesh, for which a length �x is required. We
take the same cell size as that of the global mesh but it could be any other, as what counts
at end of the day is the ratio of local time step to local mesh size. The size of the local
mesh is only important in avoiding the re�ection of waves from the numerical boundaries. If
we had perfectly transparent boundary conditions, the two cell scheme would be the perfect
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choice. In the real local Riemann problem all waves should travel away from the interface
to in�nity and these play no subsequent role on the solution at the interface x=t=0, which is
the value sought.

4. ANALYSIS OF THE SCHEMES IN ONE SPACE DIMENSION

In this section we study the resulting MUSTA schemes as applied to the following model
linear advection equation with constant coe�cient a¿0:

@
@t

q+
@
@x

f(q)=0; f= aq (10)

The �rst-order MUSTA scheme for the above equation reads

qn+1
i = qn

i − �t
�x
(fi+1=2 − fi−1=2)

where the numerical �ux is given by

fi+1=2 =�L × (aqn
i ) + �R × (aqn

i+1)=�L × (aqL) + �R × (aqR)

We �rst recall expressions for �ux coe�cients �L, �R as well as the coe�cient of the
leading term of the truncation error � for some well-known �rst-order schemes. For the
Godunov scheme [1] we have

�L = 1
2(1 + sign(a)); �R = 1

2(1− sign(a)); �= 1
2 a�x(1− K)

where K is the Courant number K = a�t=�x. For the FORCE scheme we have

�L =
(K + 1)2

2K
; �R = − (1− K)2

2K
; �= a�x

1− K2

4K

It can be easily seen that the Godunov scheme is the optimal �rst-order monotone scheme
as applied to the model equation (10) in that it has the smallest truncation error proportional
to the wave speed. The truncation error of FORCE is inversely proportional to the Courant
number K and thus the numerical di�usion does not vanish as a → 0. The same is true
for another centred scheme, the Lax–Friedrichs scheme [9]. For small values of K we have
�FORCE ∼ a�x=(4K)=�x2=(4�t) for the FORCE scheme and �LF ∼ a�x=(2K)=�x2=(2�t)
for the Lax–Friedrichs scheme. Therefore, unlike the Godunov method, the centred schemes
cannot resolve stationary discontinuities exactly.
We now proceed to analyse the MUSTA schemes. Table I contains expressions for �ux

coe�cients �L, �R as well as the coe�cient of the leading term of the truncation error �
for the original MUSTA scheme which are obtained by applying algorithm (6) to the model
equation (10). Figure 1 shows the plots of �ux coe�cients as function of K for L=0; 1; 3; 5.
We �rst note that in the special case K =1 the MUSTA �ux reproduces the optimal Godunov
�ux identically and �≡ 0. Selecting L=0 results in the FORCE scheme. Next, we observe that
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Figure 1. Plots of the �ux coe�cients �L, �R for the original MUSTA scheme (6).

the truncation error of MUSTA, though still inversely proportional to K , is much smaller than
that of the centred schemes and for K ∼ 0 can be written asymptotically as �=2−L �FORCE.
A desirable property of a numerical �ux is monotonicity. Recall that the �ux is called

monotone if the following conditions are satis�ed:

@
@qL

fi+1=2¿0;
@

@qR
f60

It is easy to see that Godunov and FORCE �uxes are monotone for 06K61. However, from
Figure 1 it is seen that the MUSTA �uxes of Table I are not monotone. Although the left
coe�cient �L¿0 is always positive, the right coe�cient is not negative in the full range of
the Courant number K . The analysis of the case L=1 is given in Reference [15], where it
is shown that the scheme is not monotone for

√
2 − 1¡K¡1. The maximum of �R in this

case occurs at K ≈ 0:58 and is equal to �R ≈ 0:02. This is negligible from the practical point
of view. However, as L grows, the loss of monotonicity becomes more serious due to the
boundary e�ects in the local time stepping and manifests itself starting from smaller K as
well. For L=3 the maximum of �R occurs at K ≈ 0:20 and is equal to 0:19 whereas for
L=10 the maximum occurs at K ≈ 0:0157 and is equal to 0.47.
We now proceed to analyse the improved MUSTA scheme as given by (9). We �rst

study a special case M¿L, in which the boundary conditions in the local time marching do
not a�ect the local solution. The �ux coe�cients �L, �R are obtained by applying algorithm
(9)–(10) and are given in Table II as functions of Kloc. The corresponding expressions for
the coe�cient of the leading term of the truncation error as a function of the global K and
local Kloc = a�tloc=�x Courant numbers for L=1, 3, 5 are provided in Table III. Figure 2
shows plots of the �ux coe�cients as function of K for the same values of L.
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Table II. Flux coe�cients �L, �R for the improved MUSTA in the case M¿L.

L Flux coe�cients

1 �L =−−4K2
loc + K4

loc − 4Kloc − 1
8Kloc

�R =
K4
loc − 4K2

loc − 1 + 4Kloc
8Kloc

3 �L =−5K
8
loc − 5− 22K6

loc − 50K2
loc − 32Kloc + 40K4

loc

64Kloc

�R =
40K4

loc + 5K
8
loc − 50K2

loc − 22K6
loc + 32Kloc − 5

64Kloc

5 �L =−63K
12
loc − 1512K6

loc + 1035K
8
loc − 63 + 1365K4

loc − 392K10
loc − 512Kloc − 1008K2

loc

1024Kloc

�R =
512Kloc + 63K12

loc + 1035K
8
loc − 392K10

loc + 1365K
4
loc − 63− 1008K2

loc − 1512K6
loc

1024Kloc

Table III. Normalized coe�cients of the leading term of the truncation error of the
improved MUSTA schemes for di�erent L and M¿L.

L �=(a�x)

1 −K4
loc − 1− 4K2

loc

8Kloc
− 1
2
K

3 −−50K2
loc + 5K

8
loc − 22K6

loc − 5 + 40K4
loc

64Kloc
− 1
2
K

5 −−63 + 1365K4
loc + 1035K

8
loc − 1008K2

loc + 63K
12
loc − 392K10

loc − 1512K6
loc

1024Kloc
− 1
2
K

From Table III we conclude that for any Kloc the truncation error of the scheme is a linear
function of the global Courant number K and has the following form:

�= 1
2 a�x( (Kloc)− K) (11)

From (11) we can infer the following properties of �. Firstly, in the particular case Kloc = 1
the truncation error of the improved MUSTA is identical to that of the Godunov method.
Secondly, we conclude that the truncation error of the scheme vanishes as a → 0. This is a
very drastic improvement over centred schemes as well as the original MUSTA scheme, for
which we have � ∼ const as a → 0, leading to extremely poor resolution of slowly moving
waves. The improved MUSTA scheme behaves similarly to the upwind Godunov scheme for
slowly moving waves, which is a desirable property of a numerical method.
We now need to choose the value of the local CFL number Kloc on the grounds of mono-

tonicity. From Figure 2 we see that the left coe�cient �L is always positive whereas the right
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Figure 2. Plots of the �ux coe�cients �L, �R for the improved MUSTA scheme (9).

Table IV. Values of the smaller root � of the equation �R(Kloc)= 0 for the improved
MUSTA �uxes as a function of number of stages L, M¿L.

L 1 2 3 5 10

�
√
2− 1 0:301 0:247 0:192 0:137

coe�cient �R is positive in a certain interval �¡Kloc¡1 and is negative outside it so that
�R(�)=�R(1)=0. Here the value of � depends on L and is given in Table IV. As Kloc → 1
we see that �R approaches zero from above. Therefore, the MUSTA scheme is not strictly
monotone for the choice of the local Courant number in the interval [�; 1]. However, as the
number of stages L grows, the curve of �R becomes closer to zero for Kloc → 1. In other
words, the absolute values of �R near Kloc = 1 diminish, see Figure 3. Since in the improved
MUSTA the choice of Kloc can be made independently from the choice of K , it is then de-
sirable to take Kloc as close to unity as possible in order to minimize the values of �R. To be
on the safe side in practical calculations, we choose Kloc = 9

10 and use this value throughout
for the rest of the paper.
The truncation error of the scheme depends on Kloc via the function  (Kloc) in (11). The

behaviour of  (Kloc) for di�erent values of L is illustrated in Figure 4. To reproduce the Go-
dunov method we require that  be equal to 1. For a given number of stages L the equation
 (Kloc)=1 has two real roots within the interval [0; 1]: Kloc = � and 1 where values of � are
given in Table IV. We note that � approaches zero as L grows. For �6Kloc61 the truncation
error of the improved MUSTA is smaller than that of the Godunov upwind scheme and there-
fore the MUSTA scheme loses strict monotonicity. Recall, that in this case �R¿0. On the other
hand, for 06Kloc¡� the truncation error of the improved MUSTA is larger than that of the
Godunov upwind scheme and therefore the MUSTA scheme is monotone but more di�usive.
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Figure 3. Plots of the right �ux coe�cient �R for the improved MUSTA scheme (9) near Kloc = 1.
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Figure 4. Plots of the function  (Kloc) in (11) for di�erent number of stages L.

We remark that the particular choice Kloc = � makes the scheme strictly monotone and
identical to the Godunov scheme for the linear scalar case but for systems, either linear or
nonlinear, leads to a signi�cant decrease in accuracy. This is explained by the fact that for
systems the time step is estimated using the fastest wave in the Riemann problem solution. For
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Table V. Flux coe�cients and the normalized coe�cient of the leading term of the
truncation error for improved MUSTA in the case Kloc = 9=10 and M¿L.

L �L �R �=(a�x)

0 1.0027778 −0:2777778× 10−2 0:5027778− 1
2 K

1 0.9977639 0:2236111× 10−2 0:4977639− 1
2 K

2 0.9995564 0:4436458× 10−3 0:4995564− 1
2 K

3 0.9999194 0:8055556× 10−4 0:4999194− 1
2 K

4 0.9999856 0:1441503× 10−4 0:4999856− 1
2 K

5 0.9999974 0:2585318× 10−5 0:4999974− 1
2 K

10 1.0000000 0:5079163× 10−9 0:4999999− 1
2 K

15 1.0000000 −0:2069606× 10−12 0:5000000− 1
2 K

20 1.0000000 0:2343364× 10−16 0:5000000− 1
2 K

the slower waves the chosen time step would correspond to a smaller local Courant number,
for which  (Kloc)→ ∞ as Kloc → 0, as expected from the �rst-order centred scheme used in
the local time marching (9). It is therefore desirable to choose Kloc as close as possible to
the larger root Kloc = 1. For example, for a chosen Kloc = 9=10 the loss of strict (theoretical)
monotonicity is negligible, vanishes as L grows and the truncation error tends to that of the
Godunov scheme.
Table V contains the expressions for the coe�cients of the improved MUSTA �uxes for

Kloc = 9=10. We observe that as L → ∞, the MUSTA �ux converges to the �ux of the
upwind Godunov method (for a¿0), that is �L → 1 and �R → 0. For any given L the left
�ux coe�cient �L is always positive, whereas �R is not negative but very small as compared
to the original formulation, see Figure 1. The coe�cient of the leading term of the truncation
error of the improved MUSTA scheme depends very weakly on the number of stages and in
the limit L → ∞ is equal to that of the Godunov scheme, namely 1

2a(1− K)�x.
We now study the in�uence of the choice of the parameter M on the properties of the

schemes as applied to the linear advection equation (10). Tables VI–VIII list the expressions
for �L, �R and � for the improved MUSTA for 2, 4 and 6 cells, respectively. Comparing with
Table V we see that the presence of numerical boundaries leads to the loss of convergence
to the Godunov �ux starting from some stage number l¿M . Nevertheless, the resulting �ux
coe�cients are very close to that of the Godunov method. Moreover, the coe�cient of the
leading term of the truncation error of the scheme virtually does not change (compare with
Table V) and remains a linear function of K .

5. STABILITY OF MUSTA SCHEMES IN MULTIPLE SPACE DIMENSIONS

In this section we study linear stability of original and improved MUSTA schemes as applied
to the model linear advection equation with constant coe�cients in two and three space
dimensions by means of the von Neumann analysis. In the 1D case both the original and
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Table VI. Flux coe�cients and the normalized coe�cient of the leading term of the
truncation error for improved MUSTA in the case Kloc = 9=10 and M =1 (2 cells).

L �L �R �=(a�x)

1 0:9977639 0:2236111× 10−2 0:4977639− 1
2 K

2 0:9972876 0:2712431× 10−2 0:4972876− 1
2 K

3 0:9972423 0:2757681× 10−2 0:4972423− 1
2 K

4 0:9972380 0:2761979× 10−2 0:4972380− 1
2 K

5 0:9972376 0:2762388× 10−2 0:4972376− 1
2 K

10 0:9972376 0:2762431× 10−2 0:4972376− 1
2 K

15 0:9972376 0:2762431× 10−2 0:4972376− 1
2 K

Table VII. Flux coe�cients and the normalized coe�cient of the leading term of the
truncation error for improved MUSTA in the case Kloc = 9=10 and M =2 (4 cells).

L �L �R �=(a�x)

2 0:9995564 +0:4436458× 10−3 0:4995564− 1
2 K

3 0:9999195 +0:8045226× 10−4 0:4999195− 1
2 K

4 0:9999805 +0:1953398× 10−4 0:4999805− 1
2 K

5 0:9999904 +0:9598415× 10−5 0:4999904− 1
2 K

10 0:9999923 +0:7673518× 10−5 0:4999923− 1
2 K

15 0:9999923 +0:7673302× 10−5 0:4999923− 1
2 K

Table VIII. Flux coe�cients and the normalized coe�cient of the leading term of the
truncation error for improved MUSTA in the case Kloc = 9=10 and M =3 (6 cells).

L �L �R �=(a�x)

2 0:9995564 +0:4436458× 10−3 0:4995564− 1
2 K

3 0:9999195 +0:8045226× 10−4 0:4999195− 1
2 K

4 0:9999856 +0:1441503× 10−4 0:4999856− 1
2 K

5 0:9999974 +0:2585318× 10−5 0:4999974− 1
2 K

6 0:9999995 +0:4769698× 10−6 0:4999995− 1
2 K

7 0:9999999 +0:1021531× 10−6 0:4999999− 1
2 K

10 1:0000000 +0:2170712× 10−7 0:5000000− 1
2 K

15 1:0000000 +0:2125592× 10−7 0:5000000− 1
2 K
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improved �rst-order MUSTA schemes are stable for 0¡K61 for any number of stages L¿0.
The technical details of the analysis are omitted.
For convenience we introduce the following notation: the original MUSTA scheme with

L stages and two cells is denoted as MUSTA-L. The improved MUSTA scheme with 2M
cells in the local domain size in (9) and L stages is denoted as MUSTA2M -L. For exam-
ple, MUSTA-3 corresponds to the scheme with local time marching (6) and L=3 whereas
MUSTA2-3 corresponds to the improved MUSTA scheme with local time marching (9),
K =9=10 and L=3.

5.1. Stability analysis in two space dimensions

Consider the following two-dimensional linear advection equation with constant coe�cients

@
@t

q+
@
@x

f(q) +
@
@y

g(q)=0; f= aq; g= bq

Here the coe�cients a, b are constant and positive. Scheme (3) now reads

qn+1
ij = qn

ij − �t
�x
(fi+1=2; j − fi−1=2; j)− �t

�y
(gij+1=2 − gij−1=2) (12)

To perform the von Neumann stability analysis of our schemes we �rst rewrite (12) in the
following form:

qn+1
ij =

1∑
l;m=−1

blmqn
i+l; j+m (13)

where blm are the coe�cients of the schemes. We then consider a trial solution qn
ij= Sn exp

(I(i�+ j�), where � and � are phase angles in x and y directions. Inserting the trial solution
into (12) we obtain the following algebraic expression for the modulus of the ampli�cation
factor S:

|S|2 =
(

1∑
l;m=−1

blm cos (l�+m�)

)2
+

(
1∑

l;m=−1
blm sin (l�+m�)

)2
(14)

For linear stability we impose the condition |S|61. Since the resulting expression for
|S| is intractable for algebraic analysis we adopt the idea of verifying the condition |S|61
numerically rather than analytically [12] as follows. Let us de�ne Courant numbers for each
coordinate direction as Kx= a�t=�x, Ky= b�t=�y. For a given pair (Kx; Ky), we evaluate
the ampli�cation factor S(Kx; Ky; �; �) for many phase angles �; � and record the proportion
p(Kx; Ky) of these pair for which |S|61. Then a contour plot of p(Kx; Ky) in the Kx − Ky

plane will indicate the stability region of the scheme.
Figure 5 shows the stability plots of the original MUSTA scheme [15] for one and three

stages. We observe that the stability region depends on the number of stages and in general
diminishes when L grows. For L=1 it can be approximately described by the following
inequality:

(Kx)2 + (Ky)26
(
3
4

)2
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Figure 5. Stability regions for two-dimensional unsplit MUSTA schemes from
References [15, 18]. Left: MUSTA-1, right: MUSTA-3.
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Figure 6. Stability regions for two-dimensional unsplit schemes. Left:
Godunov scheme, right: MUSTA2-1 scheme.

We note that the truncation error of the original MUSTA is inversely proportional to Courant
numbers in x and y coordinate directions and thus does not vanish when either of coe�cients
a, b is equal to zero. As a result, the schemes do not recover the one-dimensional stability
condition 06K61 when one of the advection coe�cients is zero. This is especially evident
for L=1.
Figure 6 shows the stability contour plots of p(Kx; Ky) for the �rst-order Godunov and

MUSTA2-1 schemes of form (12). These plots look very similar and the stability regions can
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be approximately written as

Kx + Ky61

which is larger than that of the original MUSTA schemes. The stability plots of the improved
MUSTA schemes with a large number of stages L or cells 2M are virtually identical to those
in the Figure 6 and are thus omitted.

5.2. Stability analysis in three space dimensions

Consider the three-dimensional linear equation with constant coe�cients

@
@t

q+
@
@x

f(q) +
@
@y

g(q) +
@
@z

h(q)=0; f= aq; g= bq; h= cq

Here the coe�cients a, b, c are constant and positive. The scheme now reads

qn+1
ijk = qn

ijk − �t
�x
(fi+1=2; jk − fi−1=2; jk)

−�t
�y

(gij+1=2; k − gij−1=2; k)− �t
�z
(hijk+1=2 − hijk−1=2) (15)

or in a more concise form:

qn+1
ijk =

1∑
l;m;p=−1

blmpqn
i+l; j+m; k+p

The expression for the modulus of the ampli�cation factor S is then given by

|S|2 =
(

1∑
l;m;p=−1

blmp cos (l�+m�+ p�)

)2
+

(
1∑

l;m;p=−1
blmp sin (l�+m�+ p�)

)2

where �; �; � are the phase angles. For linear stability we impose the condition |S|61 and study
it by plotting counters of p(Kx; Ky; KZ) in Kx −Ky plane for di�erent values of Kz= c�t=�z.
Figure 7 shows stability plots for the Godunov method for Kz=0 and 1

3 . The corresponding
plots for the MUSTA2-1 scheme are given in Figure 8. The stability regions of both schemes
are very similar and can be approximately written as

Kx + Ky + Kz61

The stability plots of the original MUSTA-1 scheme in three space dimensions are given in
Figure 9. We observe that the stability region is again smaller than that of improved MUSTA
schemes of the present paper and the Godunov scheme and can be approximately written as

(Kx)2 + (Ky)2 + (Kz)26 3
5

Therefore, we have established that the unsplit versions of MUSTA schemes are stable in
multiple space dimensions. In particular, the stability region of improved MUSTA schemes
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Figure 7. Stability regions for the three-dimensional Godunov scheme for
Kz =0 (left plot) and Kz = 1

3 (right plot).
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Figure 8. Stability regions for the three-dimensional MUSTA2-1 scheme for
Kz =0 (left) and Kz = 1

3 (right).

coincides with that of the unsplit Godunov method. This allows us to use the MUSTA �ux as
a building block in many existing high-order schemes, such as MUSCL-type TVD schemes
[2, 4, 5] and essentially nonoscillatory scheme [6]. We remind the reader that the use of
centred �uxes is the unsplit Godunov schemes of form (3) leads to unconditionally unstable
�nite-volume methods [12].
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Figure 9. Stability regions for the three-dimensional MUSTA-1 scheme from
References [15, 18] for Kz =0 (left) and Kz = 1

3 (right).

6. PRACTICAL IMPLEMENTATION FOR NONLINEAR SYSTEMS

Practical application of the MUSTA approach to nonlinear systems requires a particular choice
of the number of stages L in the local time marching. Since discussion for the original MUSTA
is found in Reference [15] here we concentrate on the improved MUSTA schemes for which
we additionally have to specify the number of cells 2M in the local spatial domain. As was
shown above, the choice of L determines how close the resulting MUSTA �ux is to the
Godunov �ux. The choice of the parameter M in the improved MUSTA schemes also a�ects
the convergence of the �ux to the optimal upwind Godunov �ux.
We �rst discuss the dependence of monotonicity of the MUSTA �ux on the number of

stages L. Recall that the de�nition of monotone schemes applies only to scalar equations. When
applied to nonlinear systems, these schemes, though monotone in the one-dimensional scalar
case, may produce oscillations due to the non-linearity of the system to be solved. Probably,
the most well-known example is the generation of oscillations by �rst-order Godunov methods
behind slowly moving shock waves. Therefore, from the practical point of view a slight loss
of monotonicity of the �ux for a small number of stages L, evident in Table V, is not
important. In practical computations the one-stage scheme (L=1), for which �R ≈ 2× 10−3

produces perfectly nonoscillatory results even for very severe test problems, such as blast
wave interaction and double Mach re�ection problems from Reference [19], see Section 7.
For large values of L, however, re�ections from the numerical boundaries may a�ect the lo-

cal time marching and the structure of the self-similar solution leading to less robust schemes.
It may still be possible to use L larger than M , but not much larger. The actual value of L
allowed for a given M does depend on the problem at hand. For example, our experiments
for the Euler equations show that for 2 cells it is safe to use L63. For a large number of
stages the use of four and more cells is recommended on the grounds of monotonicity and
robustness.
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For the linear advection equation the choice of L and M de�nes monotonicity properties
of the �ux but virtually does not a�ect the accuracy. For non-linear systems, however, the
accuracy of the improved MUSTA schemes does depend on the choice of L. In general, for
complicated systems with many waves it may be necessary to take L relatively large in order
to resolve the structure of the self-similar solution of the local Riemann problem (4) and to
pick up the correct �ux value at the interface position. The choice of L, which gives the best
accuracy, then depends on the system to be solved and should be determined empirically.
For the compressible Euler equations, see Section 7, the choice L=3 seems to produce good
results in most cases.
A remark is in order on the practical implementation of the �ux for large values of L

and M . Note that the waves emerging from the interface position xi+1=2 in the local Riemann
problem have travelled only l cells in both directions at stage l. Therefore, a considerable
reduction of computational cost can be achieved if one carries out the actual update in (9)
for a given stage l only for cells −l + 16m6l rather than over the entire local domain
−M + 16m6M .

7. NUMERICAL RESULTS

In this section we present numerical results illustrating the performance of the improved
MUSTA schemes of the present paper in one, two and three space dimensions as applied to
the compressible Euler equations for a gamma-law gas, which have form (1) with:

Q=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�

�u

�v

�w

E

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

; F=Qu+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

p

0

0

pu

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

; G=Qv+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

0

p

0

pv

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

; H=Qw +

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

0

0

p

pw

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

p=(� − 1)(E − 1
2�(u

2 + v2 + w2))

(16)

where �; u; v; w; p and E are density, components of velocity in the x; y and z coordinate
directions, pressure and total energy, respectively; � is the ratio of speci�c heats, we use
�=1:4 throughout.
The section is divided into two parts. In the �rst part we study the performance of MUSTA

by using it as a building block in the basic �rst-order �nite-volume scheme (3) in one and three
space dimensions. We compare results of MUSTA with those of the Godunov scheme with the
exact Riemann solver. As was already mentioned, the scheme with the exact Riemann solver
is the most accurate one and therefore should be used as a reference scheme for comparisons.
Additionally, we compare MUSTA with a state-of-art HLL Riemann solver [20] in order
to demonstrate how it fairs against other modern and popular upwind schemes. In one space
dimension we have also run the centred Lax–Friedrichs scheme [9], but the results were found
to be signi�cantly inferior to that of MUSTA and HLL schemes and are thus omitted.
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In the second part we use MUSTA as a building block in the state-of-art weighted essentially
nonoscillatory (WENO) schemes of semi-discrete form (2) for a couple of two-dimensional
test problems: a vortex evolution problem [6] and a double Mach re�ection problem [19]. In
calculations we run a particular two-dimensional variant of the WENO scheme from Reference
[16], which uses a two-point Gaussian quadrature instead of a three point one as done in
Reference [6].
For the compressible Euler equations (16) we �nd that the most economical variant of

MUSTA with 2 cells (M =2) and a small number of stages L63 produces good results. We
therefore limit our presentation of MUSTA to the particular variants: original MUSTA-3 and
improved MUSTA2-1 and MUSTA2-3.
We would like to stress, however, that for other hyperbolic systems of conservation laws

with more waves in the local Riemann problem solution, to obtain the best accuracy it may
be necessary to use a larger number of cells and stages in the local time marching (9). See
Section 4 for a detailed discussion of this issue.

7.1. First-order MUSTA schemes

7.1.1. Blast wave interaction problem. We solve the blast wave interaction test problem from
Reference [19] for the one-dimensional Euler equations. The initial condition de�ned on [0 : 1]
consists of three regions of gas at rest between re�ecting walls. Density is unity everywhere,
whereas pressure is given by

p=

⎧⎪⎪⎨
⎪⎪⎩
1000; 0:06x60:1

0:01; 0:16x60:9

100; 0:96x61:0

A detailed study of the �ow physics can be found in Reference [19]. As time evolves, two
blast waves emerge and collide, resulting in a very complex �ow pattern. This test problem
is suitable to assess the performance of the numerical schemes, in particular their robustness,
due to the extreme magnitudes of waves.
Here we present results of di�erent methods on a mesh of 3000 cells and with Courant

number K =0:9. For all runs we also plot (with a dashed line) a very accurate reference
solution obtained by running a high-order scheme on a very �ne mesh. For comparisons
we select two of the most delicate �ow variables: density and internal energy e=p=(� − 1)�.
Other variables such as velocity and pressure do not reveal the inaccuracy of the computations.
Figures 10 and 11 show results of MUSTA2-1 and MUSTA2-3 schemes (circles) as com-

pared with the Godunov method with the exact Riemann solver (solid line) at the �nal time
t=0:038. In Figure 10 we observe that MUSTA2-1 produces pro�les which are already quite
close to those of the exact Riemann solver. Next, in Figure 11, the MUSTA2-3 scheme
matches the performance of the exact Riemann solver. Figure 12 depicts results of MUSTA2-
3 (solid line) as compared with the state-of-the-art HLL scheme (circles). It is obvious from
the �gure that the HLL solution agrees with the MUSTA solutions for shock waves but is
more di�usive for the more delicate contact discontinuities, especially for the left-going one.
This is more clearly seen on the internal energy plot.
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Figure 10. Blast wave interaction problem. CFL=0.9. Dashed line: reference solution, solid line:
the Godunov scheme with the exact Riemann solver, circles: MUSTA2-1.

Finally, we demonstrate the di�erence in accuracy between improved MUSTA (developed
in this paper) and original MUSTA by performing a computation with a smaller (global)
Courant number equal to K =0:2. In Figure 13 we plot results of the improved MUSTA2-3
(solid line) and original MUSTA-3 (circles) schemes. It is clear that the accuracy of the
MUSTA2-3 scheme does not decrease signi�cantly when a smaller Courant number is used,
compare with Figure 12. The accuracy of the original MUSTA-3 does decrease and is worse
than that of the MUSTA2-3 scheme. We note, however, that the original MUSTA is still
much superior to a typical centred scheme for this test problem.
The observed di�erence in accuracy between original and improved MUSTA schemes is

explained by the fact that the truncation error of the original MUSTA is inversely proportional
to the Courant number whereas for the improved MUSTA of this paper it is a linear function
of the Courant number. Therefore, for large Courant numbers, close to unity, the performance
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Figure 11. Blast wave interaction problem. CFL=0.9. Dashed line: reference solution, solid line:
the Godunov scheme with the exact Riemann solver, circles: MUSTA2-3.

of original and improved MUSTA schemes is similar whereas for small Courant numbers the
improved one is superior.

7.1.2. Three-dimensional explosion test problem [7]. We solve the three-dimensional Euler
equations for a gamma-law gas (16). The initial condition de�ned on [−1 : 1] × [−1 : 1] ×
[−1 : 1] consists of two regions of constant but di�erent values of gas parameters separated
by a sphere of radius 0:4:

(�;p)=

{
(1:0; 1:0); r60:4

(0:125; 0:1); r¿0:4
; u= v=w=0; r2 = x2 + y2 + z2 (17)
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Figure 12. Blast wave interaction problem. CFL=0.9. Dashed line: reference solution, solid line:
MUSTA2-3, circles: the Godunov scheme with the HLL solver.

This initial condition corresponds to the so-called spherical explosion test problem [7]. We
compute the numerical solution at the output time t=0:25 on a mesh of 101 cells in each
coordinate direction. We use K =0:3 for all runs, where K = max(Kx; Ky; Kz). Recall, that
for the linear advection equation the schemes are stable for Kx + Ky + Kz61=3. As in the
one-dimensional study, we denote by a dashed line a reference (radial) solution, which is
obtained by solving the one-dimensional Euler equations with a geometric source term on a
very �ne mesh. See Section 17.1 of Reference [7] for details.
Figure 14 shows a comparison of results of MUSTA2-3 and the Godunov scheme with the

exact Riemann solver. We present distributions of gas density and internal energy along the
x-axis. The solution contains a spherical shock wave and a contact surface travelling away
from the centre and a spherical rarefaction wave travelling towards the origin (0; 0; 0). We
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Figure 13. Blast wave interaction problem. CFL=0.2. Dashed line: reference solution, solid line: present
MUSTA2-3, circles: original MUSTA-3 from References [15, 18].

observe that the accuracy of MUSTA2-3 is virtually identical to that of the Godunov scheme
with the exact Riemann solver. Figure 15 shows a comparison of the MUSTA2-3 and HLL
schemes. As in the one-dimensional case, the HLL solver is somewhat less accurate, especially
near the origin.
We have also run a special test case of a stationary contact discontinuity, for which centred

schemes as well as upwind schemes with incomplete Riemann solvers (e.g. HLL scheme) are
known to produce inaccurate results [7] whereas the Godunov scheme with the exact Riemann
solver or a complete Riemann solver (e.g. HLLC Riemann solver [21]) resolve the stationary
contact discontinuity exactly. In such situations MUSTA schemes generally converge to the
exact solution as L → ∞; M¿L. Typically, for L¿10 the MUSTA results can be regarded
as converged. However, the particular variants with L=1; : : : ; 3 stages are less accurate than
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Figure 14. Three-dimensional explosion problem. Dashed line: reference solution, solid line:
the Godunov scheme with the exact Riemann solver, circles: MUSTA2-3.

the Godunov scheme with the exact Riemann solver but much more accurate than HLL [20]
or Lax–Friedrichs [9] schemes.

7.2. WENO–MUSTA schemes

We now illustrate the application of MUSTA �uxes to �nite-volume weighted essentially
nonoscillatory (WENO) schemes [6] in two space dimensions. We use a variant of the scheme
[16] with two Gaussian integration points along the cell side. In all examples �fth-order
reconstruction and third-order time integrations are used, see References [6, 16] for details.

7.2.1. Vortex evolution problem. We solve the two-dimensional Euler equations with the
initial conditions, corresponding to a smooth vortex, moving at 45◦ to the Cartesian mesh
lines in the square domain [−5 : 5]× [−5 : 5], see Reference [6]. We apply periodic boundary
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Figure 15. Three-dimensional explosion problem. Dashed line: reference solution, solid line: MUSTA2-3,
circles: the Godunov scheme with the HLL Riemann solver.

conditions. The vortex is de�ned as the following isentropic perturbation to the uniform �ow
of unit values of primitive variables:

u=1− ”
2�
e(1=2)(1−r2) y; v=1+

”
2�
e(1=2)(1−r2) x

T =1− (� − 1)”2
8��2

e(1−r2);
p
�� =1

(18)

where r2 = x2 + y2 and the vortex strength is ”=5. We compute the numerical solution at
the output time t=10 which corresponds to one time period; at this time the vortex returns
to the initial position. We use K =0:45 for all runs.
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Table IX. Density convergence study for the vortex evolution problem (18).

Method Mesh L∞ error L∞ order L1 error L1 order

Exact Riemann solver 25× 25 6:61× 10−2 3:85× 10−3

50× 50 9:89× 10−3 2.74 2:76× 10−4 3.80
100× 100 2:68× 10−4 5.21 1:24× 10−5 4.47

HLL 25× 25 6:86× 10−2 4:32× 10−3

50× 50 1:00× 10−2 2.78 2:93× 10−4 3.88
100× 100 2:84× 10−4 5.14 1:39× 10−5 4.40

MUSTA2-1 25× 25 7:96× 10−2 5:12× 10−3

50× 50 1:17× 10−2 2.77 3:45× 10−4 3.89
100× 100 3:52× 10−4 5.06 1:66× 10−5 4.38

MUSTA2-3 25× 25 6:20× 10−2 3:62× 10−3

50× 50 9:70× 10−3 2.68 2:62× 10−4 3.79
100× 100 2:56× 10−4 5.25 1:12× 10−5 4.54
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Figure 16. Double Mach re�ection problem for the WENO-MUSTA2-3 scheme. Meshes of 240 × 60
(top), 480× 120 (middle) and 960× 240 (bottom) cells are used. 30 contour lines from 2 to 22.
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Figure 17. Double Mach re�ection problem for the WENO-MUSTA2-3 scheme. Zoom
of the blow-up region of Figure 16.
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Table IX shows the convergence study for schemes with di�erent �uxes. The errors of cell
averages of the solution in L∞ and L1 norms are presented. We observe that approximately
�fth-order convergence rate is achieved. Schemes with MUSTA2-3 and exact Riemann solver
produce similar errors whereas those with HLL and MUSTA2-1 are somewhat less accurate.
The di�erence in accuracy can be explained as follows. The HLL Riemann solver does not
recognize all the waves in the Riemann problem solution and is thus more di�usive than the
exact (complete) Riemann solver. Although the MUSTA2-1 �ux does attempt to resolve all
the waves by local time marching, one stage is obviously not su�cient to do so accurately,
whereas the MUSTA2-3 does it.

7.2.2. Double Mach re�ection of a strong shock. We solve the two-dimensional Euler equa-
tions in a rectangular domain. The formulation of the problem, computational setup and de-
tailed discussion of the �ow physics can be found in Reference [19]. At the given output time
a complicated �ow pattern forms containing two Mach shocks, two slip surfaces and a jet.
Figures 16 and 17 show numerical results of the WENO scheme with the new MUSTA2-3
�ux on three meshes: 240× 60, 480× 120 and 960× 240 cells. We observe that the scheme
produces the �ow pattern generally accepted in the present literature [6, 19] as correct, on all
meshes. All discontinuities are well resolved and correctly positioned.
The delicate features of the �ow, such as slip surfaces, are more di�cult to resolve ac-

curately. For these the results of the present scheme are more accurate than those of the
original scheme (6), found in Figures 3 and 5 of Reference [16] and comparable to those of
the scheme with the state-of-the-art HLLC �ux [21] found in Figures 2 and 4 of [16].
We have also run the spatially seventh order version of the scheme, with good results. The

corresponding plots are omitted.

8. CONCLUSIONS

In this paper we developed an improved version of the multi-stage (MUSTA) approach to
the construction of upwind Godunov-type �uxes. An analysis of the schemes as applied to
the linear advection equation with constant coe�cients shows the following improvements of
the new MUSTA schemes over the original ones. Firstly, the stability region of new MUSTA
schemes coincides with that of the Godunov method for any choice of the number of stages
and cells in the local time marching, whereas for the original formulation the stability region
is smaller than that of the Godunov method and diminishes with a growing number of stages.
Moreover, the original MUSTA schemes do not recover the one-dimensional stability condition
when some of the coe�cients of the equation are equal to zero, whereas the new ones do.
Secondly, the truncation error of the new MUSTA schemes is a linear function of the

Courant number coe�cient and vanishes when the coe�cients of the equation are equal to
zero. This is not the case with the original formulation, in which the truncation error is
inversely proportional to the Courant number coe�cient. Moreover, as the number of stages
grows, the truncation error of the new MUSTA schemes rapidly converges to the truncation
error of the Godunov method.
For nonlinear systems the above-mentioned properties of the new MUSTA schemes have

been demonstrated by numerical examples. In particular, for the compressible Euler equations
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the most economical MUSTA scheme with two cells is e�ectively as accurate as the Godunov
method with the exact Riemann solver in most cases.
The schemes with new MUSTA �uxes are most suitable for solving very complex nonlinear

hyperbolic systems for which the solution of the Riemann problem is not known or is too
costly. This is due to ease of coding of the new schemes (no complex logic is used) and the
fact that no detailed knowledge on the solution of the Riemann problem is required.
We note that currently the kind of schemes proposed for such complex applications are the

so-called centred schemes. In these methods the truncation error is inversely proportional to
the Courant number coe�cient. Moreover, to ensure stability of centred methods in multiple
space dimensions rather complicated staggered meshing must be used. Therefore, the main
advantage of schemes with MUSTA �uxes over centred schemes lies in the much better
accuracy and stability. Our new schemes are good alternatives to current centred methods and
to conventional upwind methods as applied to complicated hyperbolic systems for which the
solution of the Riemann problem is costly or unknown.
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